Blue-ray disc accelerates from rest to a constant rotational speed of 466 rpm, it rotates through an angular displacement of 0.250 rev. What is the angular acceleration of the CD?

Respuesta :

Answer:

[tex]\alpha =434312\ rev/s^2[/tex]

Explanation:

Given that,

Initial angular speed, [tex]\omega_i=0[/tex]

Final angular speed, [tex]\omega_f=466\ rpm[/tex]

Angular displacement, [tex]\theta=0.25\ rev[/tex]

We need to find the angular acceleration of the CD. Using third equation of rotational kinematics as follows :

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\\\alpha =\dfrac{\omega_f^2-\omega_i^2}{2\theta}\\\\\alpha =\dfrac{466^2-0^2}{2\times 0.25}\\\\\alpha =434312\ rev/s^2[/tex]

So, the angular acceleration of the CD is equal to [tex]434312\ rev/s^2[/tex].