Answer:
[tex]\alpha =434312\ rev/s^2[/tex]
Explanation:
Given that,
Initial angular speed, [tex]\omega_i=0[/tex]
Final angular speed, [tex]\omega_f=466\ rpm[/tex]
Angular displacement, [tex]\theta=0.25\ rev[/tex]
We need to find the angular acceleration of the CD. Using third equation of rotational kinematics as follows :
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\\\alpha =\dfrac{\omega_f^2-\omega_i^2}{2\theta}\\\\\alpha =\dfrac{466^2-0^2}{2\times 0.25}\\\\\alpha =434312\ rev/s^2[/tex]
So, the angular acceleration of the CD is equal to [tex]434312\ rev/s^2[/tex].