Respuesta :

Given:

The equation of the curve is:

[tex]y=2x^3-5x+1[/tex]

To find:

The gradient (slope) of the given curve at point (2,7).

Solution:

We have,

[tex]y=2x^3-5x+1[/tex]

Differentiate the given equation with respect to x.

[tex]y=2(3x^2)-5(1)+(0)[/tex]

[tex]y'=6x^2-5[/tex]

Now we need to find the value of this derivative at (2,7).

[tex]y'_{(2,7)}=6(2)^2-5[/tex]

[tex]y'_{(2,7)}=6(4)-5[/tex]

[tex]y'_{(2,7)}=24-5[/tex]

[tex]y'_{(2,7)}=19[/tex]

Therefore, the gradient (slope) of the given curve at point (2,7) is 19.