Respuesta :
Answer:
[tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{arctan(e^{3x})}{3} + C[/tex]
General Formulas and Concepts:
Algebra I
- Exponential Rule [Powering]: [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = e^{3x}[/tex]
- [u] Differentiate [Exponential Differentiation, Chain Rule]: [tex]\displaystyle du = 3e^{3x} \ dx[/tex]
Step 3: Integrate Pt. 2
- [Integrand] Rewrite [Exponential Rule - Powering]: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \int {\frac{e^{3x}}{(e^{3x})^2 + 1}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{1}{3}\int {\frac{3e^{3x}}{(e^{3x})^2 + 1}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{1}{3}\int {\frac{1}{u^2 + 1}} \, du[/tex]
- [Integral] Arctrig Integration: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{1}{3} \bigg[ \frac{1}{1}arctan \Big( \frac{u}{1} \Big) \bigg] + C[/tex]
- Simplify: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{arctan(u)}{3} + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {\frac{e^{3x}}{e^{6x} + 1}} \, dx = \frac{arctan(e^{3x})}{3} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e