You decide to set aside $120 a month for your future. Assuming an interest rate of 6.35%, how much will you have after 25 years? How much more would you have if you invested for 30 years?

Respuesta :

Answer:

After 20 years you will have "$87,784.99" and after 30 years you will have "$41,151.55".

Explanation:

The give values are:

After 25 years,

Cash Flow per period,

C = $120

Interest rate per period,

i = [tex]\frac{6.35 \ percent}{12}[/tex]

= [tex]0.52916667 \ percent[/tex]

Number of period,

n = [tex]25\times 12[/tex]

  = [tex]300[/tex]

The future value will be:

=  [tex]C\times \frac{ [(1+i)^n-1]}{i}[/tex]

On substituting the given values, we get

=  [tex]\frac{120[ (1+0.0052916667)^{300} -1]}{0.0052916667}[/tex]

=  [tex]120[\frac{(4.8711 -1)}{0.0052916667} ][/tex]

=  [tex]87,784.99[/tex] ($)

After 30 years,

Cash Flow per period,

C = $120

Interest rate per period,

i = [tex]\frac{6.35 \ percent}{12}[/tex]

= [tex]0.52916667 \ percent[/tex]

Number of period,

n = [tex]30\times 12[/tex]

  = [tex]360[/tex]

The future value will be:

=  [tex]C\times \frac{ [(1+i)^n-1]}{i}[/tex]

On substituting the given values, we get

=  [tex]\frac{120[ (1+0.0052916667)^{360} -1] }{0.0052916667}[/tex]

=  [tex]\frac{120[ (1.0052916667)^{360} -1]}{0.0052916667}[/tex]

=  [tex]120[\frac{(6.6857 -1)}{0.0052916667} ][/tex]

=   [tex]128,936.54[/tex] ($)

Thus

You will have:

= [tex]128936.54-87784.99[/tex]

= [tex]41151.55[/tex] ($)