Respuesta :

Answer:

0.245 m

Explanation:

We are given that

[tex]q_1=-5nC=-5\times 10^{-9} C[/tex]

Where [tex]1nC=10^{-9} C[/tex]

[tex]q_2=-2.00nC=-2\times 10^{-9}C[/tex]

Distance between q1 and q2=0.40 m

We have to find the equilibrium  for a positive charge placed between them.

Let q be the positive charge placed at distance x from q1 .

r1=x

r2=0.40-x

At equilibrium

Total force =0

[tex]\frac{kq\times 5\times 10^{-9}}{x^2}-\frac{kq\times 2\times 10^{-9}}{(0.40-x)^2}=0[/tex]

Where electric force=[tex]\frac{kq_1q_2}{r^2}[/tex]

[tex]\frac{5\times 10^{-9}\times kq}{x^2}=\frac{2\times 10^{-9}\times kq}{(0.40-x)^2}[/tex]

[tex]5(0.40-x)^2=2x^2[/tex]

[tex]0.8-4x+5x^2=2x^2[/tex]

[tex]5x^2-2x^2-4x+0.8=0[/tex]

[tex]3x^2-4x+0.8=0[/tex]

[tex]x=\frac{4\pm\sqrt{16-4\times 3\times 0.8}}{3(2)}[/tex]

By using the formula

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{4\pm 2.5298}{6}[/tex]

By solving we get

[tex]x=1.0883,0.245[/tex]

[tex]x=1.0883>0.40 [/tex]

It is not possible

Therefore, the equilibrium point for a positive charge placed between them is given by

x=0.245 m