Respuesta :

Answer:

Use the quadratic formula

   =−±2−4√2

x=−b±b2−4ac2ax=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac

   ​​

   Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

   2+5+6=0

   x2+5x+6=0x^{2}+5x+6=0x2+5x+6=0

   =1

   a=1a={\color{#c92786}{1}}a=1

   =5

   b=5b={\color{#e8710a}{5}}b=5

   =6

   c=6c={\color{#129eaf}{6}}c=6

=−5±52−4⋅1⋅6√2⋅1

2

Simplify

3

Separate the equations

4

Solve

Solution

=−2=−3

Step-by-step explanation:

Answer:

x= - 2 or x = - 3

Step-by-step explanation:

[tex]x^{2} +5x+6=0\\Factorise\\(x^{2} +3x)(+2x+6)=0\\x(x+3)+2(x+3)=0\\(x+2)(x+3)=0\\x+2 = 0 or x+3=0\\x=-2 or x=-3[/tex]