Respuesta :
Answer:
12 miles
Step-by-step explanation:
The problem above is related to the topic on "Equivalent Ratios." The missing term above is "the number of miles that the vehicle can travel per gallon of gasoline." In order to find this term, you have to use the "cross products."
Let n be the missing term.
- [tex]1\frac{1}{8} gallons[/tex]/[tex]13\frac{1}{2} miles[/tex] = [tex]\frac{1 gallon}{n}[/tex]
- [tex]\frac{9}{8} gallons[/tex]/[tex]\frac{27}{2} miles[/tex] = [tex]\frac{1 gallon}{n}[/tex]
- [tex]\frac{9}{8}[/tex] x n = [tex]\frac{27}{2}[/tex] x 1 gallon
- n = [tex]\frac{27}{2}[/tex] ÷ [tex]\frac{9}{8}[/tex]
- n = [tex]\frac{27}{2}[/tex] x [tex]\frac{8}{9}[/tex]
- n = 12 miles
Therefore, the vehicle can travel 12 miles per gallon of gasoline.
Answer:
12 miles per gallon of gasoline
Step-by-step explanation:
1 1/8 gallon of gasoline = 13 1/2
9/8 gallon of gasoline = 27/2 miles
1 gallon of gasoline 8 times 27/9 times 2 miles
1 gallon of gasoline = 216/18
1 gallon of gasoline = 12 miles
Hence,the car can travel 12 miles per gallon of gasoline
The rate of traveling is 12 miles per gallon