Respuesta :

Answer:

[tex] {x}^{2} - 12x + 5 = 7[/tex]

i) move constants to the right-hand side and change its sign

[tex] {x}^{2} - 12 {x} = 7 - 5[/tex]

ii) subtract the numbers

[tex] {x}^{2} - 12x = 2[/tex]

iii) add (12/2)² to both sides of the equation

[tex] {x}^{2} - 12x + ( \frac{12}{2} ) {}^{2} = 2 + ( \frac{12}{2} ) {}^{2} [/tex]

iv) using a²-2ab+b²=(a-b)² , factorize the expression

[tex](x - \frac{12}{2} ) {}^{2} = 2 + ( \frac{12}{2} ) {}^{2} [/tex]

v) calculate the value

[tex](x - \frac{12}{2}) {}^{2} = 2 + 36[/tex]

[tex](x - \frac{12}{2}) {}^{2} = 38[/tex]

vi) reduce the fraction

[tex](x - 6) {}^{2} = 38[/tex]

vii) solve the equation for x

[tex]x - 6 = + - \sqrt{38} [/tex]

1) first value of x

[tex]x - 6 = \sqrt{38} [/tex]

[tex]x = \sqrt{38} + 6 \: or \: 12.16[/tex]

2) second value of x

[tex]x - 6 = - \sqrt{38} [/tex]

[tex]x = - \sqrt{38} + 6 \: or \: - 0.16[/tex]

Answer:

xd

Step-by-step explanation:

xd