Answer:
[tex]k = -\frac{1}{5}[/tex] -- Constant
[tex]y = -\frac{x}{5}[/tex] -- Equation
Step-by-step explanation:
Given
[tex]\{(-15, 3), (-5, 1), (0, 0), (10, -2)\}[/tex]
Solving (a): The constant of variation
The given parameter is of the form (x,y) and the variation constant is calculated using:
[tex]k = \frac{y}{x}[/tex]
For:(-15,3), k is calculated as
[tex]k = \frac{y}{x}[/tex]
[tex]k = \frac{3}{-15}[/tex]
[tex]k = -\frac{1}{5}[/tex]
For (-5,1)
[tex]k = \frac{y}{x}[/tex]
[tex]k = \frac{1}{-5}[/tex]
[tex]k = -\frac{1}{5}[/tex]
The equation is calculated using the following rule:
[tex]y = kx[/tex]
Substitute [tex]-\frac{1}{5}[/tex] for k
[tex]y = -\frac{1}{5} * x[/tex]
[tex]y = -\frac{x}{5}[/tex]