Respuesta :

Answer:

[tex]\int^{\pi}_{0}sin(x)dx = 2[/tex]

Step-by-step explanation:

To solve for the value of [tex]\int^{\pi}_{0}sin(x)dx[/tex], we need to first find the antiderivative of [tex]sin(x)[/tex].

Since the derivative of [tex]cos(x)[/tex] is [tex]-sin(x)[/tex], therefore the derivative of [tex]-cos(x)[/tex] is [tex]sin(x)[/tex]. With this:

[tex]\int^{\pi}_{0}sin(x)dx = -cos(\pi)-(-cos(0))[/tex]

[tex]=-cos(\pi)+cos(0)[/tex]

[tex]=-(-1)+1[/tex]

[tex]=2[/tex]

∴ [tex]\int^{\pi}_{0}sin(x)dx = 2[/tex]

Hope this helps :)