Answer:
Step-by-step explanation:
- Note: finding the sum not x
First rewrite the first term as:
- 1/sin2x =
- sinx / (sinxsin2x) =
- sin(2x-x) / (sinxsin2x) =
- (sin2xcosx - cosxsinx) / (sinxsin2x) =
- (sin2xcosx)/(sinxsin2x) - (cos2xsinx)/(sinxsin2x) =
-
cosx/sinx - cos2x/sin2x =
-
cotx - cot2x
Now the sum is:
- S = cotx - cot2x + cot2x - cot4x +... + cot2ⁿ⁻²x - cot2ⁿx =
- cotx - cot2ⁿx