Answer:
[tex]\frac{dy}{dx} = \frac{sin(y) + ycos(x)}{sin(x) - xcos(y)}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Algebra I
Calculus
- Derivatives
- Derivative Notation
- Implicit Differentiation
- Trig Derivative: [tex]\frac{d}{dx} [sin(u)] = cos(u) \cdot u'[/tex]
- Product Rule: [tex]\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
[tex]ysin(x) = xsin(y)[/tex]
Step 2: Differentiate
Implicit Differentiation
- Differentiate [Product Rule/Trig}: [tex]y'sin(x) + ycos(x) = sin(y) + xcos(y)y'[/tex]
- Subtract ycos(x) on both sides: [tex]y'sin(x) = sin(y) + xy'cos(y) - ycos(x)[/tex]
- Subtract xy'cos(y) on both sides: [tex]y'sin(x) - xy'cos(y) = sin(y) - ycos(x)[/tex]
- Factor out y': [tex]y'[sin(x) - xcos(y)] = sin(y) - ycos(x)[/tex]
- Isolate y': [tex]y' = \frac{sin(y) - ycos(x)}{sin(x) - xcos(y)}[/tex]