Respuesta :

Question:

Prove that:

[tex]tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)[/tex]

Answer:

Proved

Step-by-step explanation:

Given

[tex]tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)[/tex]

Required

Prove

[tex]tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)[/tex]

Subtract tan(10) from both sides

[tex]- tan(10)+tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100) - tan(10)[/tex]

[tex]tan(70) + tan(100) = tan(10). tan(70). tan(100) - tan(10)[/tex]

Factorize the right hand size

[tex]tan(70) + tan(100) = -tan(10)(-tan(70). tan(100) + 1)[/tex]

Rewrite as:

[tex]tan(70) + tan(100) = -tan(10)(1-tan(70). tan(100))[/tex]

Divide both sides by [tex]1-tan(70). tan(100)[/tex]

[tex]\frac{tan(70) + tan(100)}{1-tan(70). tan(100)} = \frac{-tan(10)(1-tan(70). tan(100))}{1-tan(70). tan(100))}[/tex]

[tex]\frac{tan(70) + tan(100)}{1-tan(70). tan(100)} = -tan(10)[/tex]

In trigonometry:

[tex]tan(A + B) = \frac{tan(A) + tan(B)}{1 - tan(A)tan(B)}[/tex]

So:

[tex]\frac{tan(70) + tan(100)}{1 - tan(70)tan(100)}[/tex] can be expressed as: [tex]tan(70 + 100)[/tex]

[tex]\frac{tan(70) + tan(100)}{1-tan(70). tan(100)} = -tan(10)[/tex] gives

[tex]tan(70 + 100) = -tan(10)[/tex]

[tex]tan(170) = -tan(10)[/tex]

In trigonometry:

[tex]tan(180 - \theta) = -tan(\theta)[/tex]

So:

[tex]tan(180 - 10) = -tan(10)[/tex]

Because RHS = LHS

Then:

[tex]tan(10) + tan(70) + tan(100) = tan(10). tan(70). tan(100)[/tex] has been proven