Answer:
Following are the solution to this question:
Explanation:
[tex]Y=Y_{NS}+Y_{ew}[/tex]
[tex]=\frac{q_{NS}}{S_{NS}}+\frac{q_{ew}}{S_{ew}}\\\\=\frac{600}{1800}+\frac{400}{1800}\\\\=\frac{6}{18}+\frac{4}{18}\\\\=\frac{3}{9}+\frac{2}{9}\\\\=\frac{1}{3}+\frac{2}{9}\\\\=\frac{3+2}{9}\\\\=\frac{5}{9}\\\\=0.55555555556\\\\=0.57[/tex]
calculating length [tex](C_D)=\frac{1.5 \ L +5}{1-y}\\\\[/tex]
[tex]=\frac{1.5 \times (1.2) +5}{1-0.57}\\\\=\frac{1.8 +5}{0.43}\\\\=\frac{6.8}{0.43}\\\\= 15.8 \ sec[/tex]
critical value:
[tex]\to V_{C_1}= 600 \ \frac{veh}{hr}\\\\\to V_{C_2}= 400 \ \frac{veh}{hr}\\\\[/tex]
Total critical value:
[tex]V_C= V_{C_1}+ V_{C_2}\\\\[/tex]
[tex]= 600 + 400\\\\= 1 000 \ \frac{veh}{hr}\\\\[/tex]
Active green time[tex]= 15.8-1.2=14.6[/tex]
[tex]g_1=\frac{600}{1000}\times 14.6= 8.76 \ sec\\\\g_2=\frac{400}{1000}\times 14.6= 5.84 \ sec[/tex]
Native green time:
[tex]G_1= 8.76 -1.2+4 =11.56 \sec\\\\ G_2= 5.84 -1.2+4 =8.64 \sec[/tex]