Respuesta :

Answer:

π/2

Step-by-step explanation:

Given the expression;

secθ − tan θ = cosθ

We are to find the solution in the interval [0, 2π).This is as shown;

From trigonometry identity;

secθ = 1/cosθ

tanθ = sinθ/cosθ

Substitute into the formula;

secθ − tan θ = cosθ

1/cosθ-sinθ/cosθ = cosθ

Multiply through by cosθ

1 - sinθ = cos²θ

1-sinθ = (1-sin²θ)

1-sin²θ-1+sinθ =0

-sin²θ+sinθ = 0

sin²θ = sinθ

sinθ = 1

θ = arcsin 1

θ = 90

θ = π/2

Hence the solution is π/2

The equation is an illustration of trigonometry ratios and identities

The solution in the interval  [0, 2π) is [tex]\mathbf{\theta = \frac{\pi}{2}}[/tex]

The equation is given as:

[tex]\mathbf{sec\theta - tan \theta = cos\theta}[/tex]

In trigonometry identity, we have:

[tex]\mathbf{sec\theta = \frac{1}{cos\theta}}[/tex]

and

[tex]\mathbf{tan\theta = \frac{sin\theta}{cosθ}}[/tex]

So the equation becomes

[tex]\mathbf{\frac{1}{cos\theta} -\frac{sin\theta}{cos\theta} = cos\theta}[/tex]

Multiply through by cosθ

[tex]\mathbf{1 - sin\theta = cos\²\theta}[/tex]

In trigonometry,

[tex]\mathbf{cos\²\theta = 1 - sin^2\theta }[/tex]

So, we have:

[tex]\mathbf{1-sin\theta = 1-sin\²\theta}[/tex]

Subtract 1 from both sides

[tex]\mathbf{sin\theta = sin\²\theta}[/tex]

Divide both sides by [tex]\mathbf{sin\theta}[/tex]

[tex]\mathbf{1 = sin\theta}[/tex]

Rewrite as:

[tex]\mathbf{sin\theta = 1}[/tex]

Take arc sin of both sides

[tex]\mathbf{\theta = sin^{-1}(1)}[/tex]

This gives

[tex]\mathbf{\theta = \frac{\pi}{2}}[/tex]

Read more about trigonometry ratios at:

https://brainly.com/question/24888715