Respuesta :
Answer:
The perimeter of the new TV is approximately 95.32 inches
Step-by-step explanation:
The diagonal dimension of the original TV = 32 inches
The perimeter of the original TV = 87.16 inches
The diagonal dimension of the new TV = 70 inches
The perimeter of the new TV = 87.16 inches
For the original TV, we have;
Let w be the width of the original TV and l be the length of the original TV, we have;
2·w + 2·l = 87.16
√(w² + l²) = 32
Therefore, we have;
32² = w² + l²
w = (87.16 - 2·l)/2
w = 43.58 - l
32² = l² + (43.58 - l)²
l² + (43.58 - l)² - 32² = 0
l² + 43.58² - 2 × 43.85 × l + l² - 32² = 0
2·l² - 87.16·l + 875.2164 = 0
By the quadratic formula, we have;
l = (87.16 ± √((-87.16)² - 4×2 × 875.2164))/(2 × 2)
Therefore, l = 27.89 inches or l = 15.69
Therefore, w = (87.16 - 2·l)/2 = (87.16 - 2× 27.89)/2 = 15.69
or w = (87.16 - 2× 15.69)/2 = 27.89
Whereby the ratio of the width to the length of the original TV and the new TV are the same, we have;
15.69/27.89
w₂/l₂ for the new TV = 15.69/27.89
∴ w₂ = l₂ × 15.69/27.89
w₂² + l₂² = 70²
∴ (l₂ × 15.69/27.89)² + l₂² = 70²
l₂² × (15.69/27.89)² + l₂² = 70²
l₂²((15.69/27.89)² + 1) = 70²
l₂² = 70²/((15.69/27.89)² + 1) = 3722.04
l₂ = √(3722.04) ≈ 61.0
w₂ = l₂ × 15.69/27.89 = 61 × 15.69/27.89 ≈ 34.32
Therefore;
The perimeter of the new TV = 34.32 + 61 = 95.32 inches.
In this exercise we have to use the knowledge and information given to calculate the perimeter that will correspond to:
The perimeter of the new TV is approximately 95.32 inches
So the data for this exercise is from:
- The diagonal dimension of the original TV = 32 inches
- The perimeter of the original TV = 87.16 inches
- The diagonal dimension of the new TV = 70 inches
- The perimeter of the new TV = 87.16 inches
Let w be the width of the original TV and l be the length of the original TV, we have;
[tex]2*(w) + 2*(l) = 87.16\\\sqrt{(w^2 + l^2)} = 32[/tex]
Therefore, we have:
[tex]32^2 = w^2 + l^2\\w = (87.16 - 2*l)/2\\w = 43.58 - l\\32^2 = l^2 + (43.58 - l)^2\\l^2 + (43.58 - l)^2 - 32^2 = 0\\l^2 + 43.58^2 - (2 * 43.85 * l)+ l^2 - 32^2 = 0\\(2)*(l)^2 - 87.16*l + 875.2164 = 0[/tex]
By the quadratic formula, we have;
[tex]l = (87.16 +/- \sqrt{((-87.16)^2 - 4*2 * 875.2164))/(2 * 2)} )[/tex]
Therefore:
[tex]w = (87.16 - (2)*(l))/2 = (87.16 - 2* 27.89)/2 = 15.69\\w = (87.16 - 2* 15.69)/2 = 27.89[/tex]
Whereby the ratio of the width to the length of the original TV and the new TV are the same, we have;
w₂/l₂ for the new TV = [tex]15.69/27.89[/tex]
[tex]w_2 = (l_2)* (15.69/27.89)\\w_2^2 + l_2^2 = 70^2\\(l_2 *15.69/27.89)^2 + l^2_2 = 70^2\\l^2_2 * (15.69/27.89)^2 + l^2_2 = 70^2\\l^2_2((15.69/27.89)^2 + 1) = 70^2\\l^2_2 = 70^2/((15.69/27.89)^2 + 1) = 3722.04\\l_2 = \sqrt{(3722.04)} = 61.0\\w_2= l_2 * 15.69/27.89 = 61 * 15.69/27.89 = 34.32\\[/tex]
The perimeter of the new TV :
[tex]P = 34.32 + 61 = 95.32[/tex]
See more about perimeter at brainly.com/question/6465134