Respuesta :

Answer:

x = 8, y = 4

Step-by-step explanation:

To find x use the sine ratio in the right triangle and the exact value

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , thus

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{4\sqrt{3} }{x}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

x × [tex]\sqrt{3}[/tex] = 8[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

x = 8

--------------------------------------------------------------

To find y use the tangent ratio in the right triangle and the exact value

tan60° = [tex]\sqrt{3}[/tex] , thus

tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{4\sqrt{3} }{y}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by y )

4[tex]\sqrt{3}[/tex] = y × [tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

y = 4