A cube has a side length of 3x^6 units. A smaller cube has a side length of x^6 units. How many smaller cubes will fit in the larger cube?
ASAP please

Respuesta :

Answer:

27

Step-by-step explanation:

The volume of a cube is V = s³.

The volume of the larger cube is (3x⁶)³ = 27x¹⁸.

The volume of the smaller cube is (x⁶)³ = x¹⁸.

So the larger cube is 27 times larger than the smaller cube.

It's given in the question,

  • Side length of the smaller cube is [tex]x^6[/tex] units.
  • Side length of the larger cube is [tex]3x^6[/tex] units.

We have to find the number of smaller cubes that can be fitted in the larger cube.

Volume of cube is given by the formula,

              Volume = (side)³

Volume of the larger cube = [tex](3x^6)^3[/tex]

                                             = [tex]27x^{18}[/tex] units³

Volume of the smaller cube = [tex](x^6)^3[/tex]

                                               = [tex]x^{18}[/tex] units³

Let the number of smaller cube that can be fitted in the larger cube = [tex]n[/tex]

Volume of [tex]n[/tex] cubes = [tex]nx^{18}[/tex] units³

 If space inside the larger cube will be occupied by 'n' smaller cubes,

          volume of [tex]n[/tex] smaller cubes = Volume of a larger cube

                                              [tex]n(x^{18})=27x^{18}[/tex]

                                                      [tex]n=27[/tex]

           Therefore, [tex]27[/tex] smaller cubes can be fitted in the larger cube.

Learn more,

https://brainly.com/question/14053935