Answer:
[tex](1,-5.25)[/tex] and [tex](2,-4.5)[/tex]
[tex]y=\dfrac{3}{4}x-6[/tex]
[tex]y=\dfrac{3}{4}x-6[/tex]
Step-by-step explanation:
The equation of the line is [tex]3x-4y=24[/tex]
Let us take [tex]x=1[/tex]
[tex]3\times1-4y=24\\\Rightarrow y=\dfrac{24-3}{-4}\\\Rightarrow y=-5.25[/tex]
Let us take [tex]x=2[/tex]
[tex]3\times2-4y=24\\\Rightarrow y=\dfrac{24-6}{-4}\\\Rightarrow y=-4.5[/tex]
Two solutions of the equation are [tex](1,-5.25)[/tex] and [tex](2,-4.5)[/tex]
Slope is given by
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}\\\Rightarrow m=\dfrac{-4.5-(-5.25)}{2-1}\\\Rightarrow m=\dfrac{3}{4}[/tex]
The slope of the equation is [tex]\dfrac{3}{4}[/tex]
[tex]3x-4y=24\\\Rightarrow y=\dfrac{3x-24}{4}\\\Rightarrow y=\dfrac{3}{4}x-6[/tex]
The slope intercept form of the equation is [tex]y=\dfrac{3}{4}x-6[/tex]