Respuesta :

Answer:

B) 9

Step-by-step explanation:

According to the statement, we have the following relationship:

[tex]y \propto x[/tex]

[tex]y = k\cdot x[/tex] (Eq. 1)

Where:

[tex]k[/tex] - Proportionality constant, dimensionless.

[tex]x[/tex] - Independent variable, dimensionless.

[tex]y[/tex] - Dependent variable, dimensionless.

Such constant is eliminated by constructing this relationship:

[tex]\frac{y_{2}}{y_{1}} = \frac{x_{2}}{x_{1}}[/tex]

[tex]x_{2} = \left(\frac{y_{2}}{y_{1}} \right)\cdot x_{1}[/tex] (Eq. 2)

If we know that [tex]y_{1} = 56[/tex], [tex]x_{1} = 6[/tex] and [tex]y_{2} = 84[/tex], then the value of [tex]x_{2}[/tex] is:

[tex]x_{2} = \left(\frac{84}{56} \right)\cdot (6)[/tex]

[tex]x_{2} = 9[/tex]

Hence, the correct answer is B.