Respuesta :
Answer:
19.5 m/s
87.8 m
Explanation:
The acceleration of block one is:
∑F = ma
-m₁gμ = m₁a
a = -gμ
a = -(9.8 m/s²) (0.22)
a = -2.16 m/s²
The velocity of block one just before the collision is:
v² = v₀² + 2aΔx
v² = (8.25 m/s)² + 2 (-2.16 m/s²) (2.3 m)
v = 7.63 m/s
Momentum is conserved, so the velocity of block two just after the collision is:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
m₁u₁ = m₂v₂
(18.5 kg) (7.63 m/s) = (7.25 kg) v
v = 19.5 m/s
The acceleration of block two is also -2.16 m/s², so the distance is:
v² = v₀² + 2aΔx
(0 m/s)² = (19.5 m/s)² + 2 (-2.16 m/s²) Δx
Δx = 87.8 m
The velocity of block 2 and the distance traveled by it prior to being at rest post-collision are 19.5 m/s and 87.8 m. Check the calculations below:
Friction
Given that,
[tex]m_{1}[/tex] = 18.5 kg
d = 2.3m
To find,
Acceleration of block 1:
∑[tex]F = ma[/tex]
⇒ -m₁gμ = m₁a
⇒ a = -gμ
⇒ a [tex]= -(9.8 m/s^2) (0.22)[/tex]
∵ a [tex]= -2.16 m/s^2[/tex]
Now,
To determine the velocity of block one prior to the collision:
We know,
The initial velocity of block 1 = 8.25 m/s
⇒ [tex]v^2 = v_{o}^2 + 2[/tex]aΔx
⇒ [tex]v^2 = (8.25 m/s)^2 + 2 (-2.16 m/s^2) (2.3 m)[/tex]
∵ [tex]v = 7.63 m/s[/tex]
We also know,
[tex]m_{2}[/tex] = 7.25 kg
Now,
The velocity of block 2 post collision:
⇒ [tex]m_{1} u_{1} + m_{1} u_{1} = m_{1} v_{1} + m_{2} v_{2}[/tex]post-collision
Through this,
⇒ [tex](18.5 kg) (7.63 m/s) = (7.25 kg) v[/tex]
∵[tex]v = 19.5 m/s[/tex]
The distance can be found through:
⇒ [tex]v^2 = v_{o} ^{2} + 2[/tex][tex]a[/tex]Δ[tex]x[/tex]
⇒ [tex](0 m/s)^2 = (19.5 m/s)^2 + 2 (-2.16 m/s^2)[/tex]Δ[tex]x[/tex]
∵ Δ[tex]x = 87.8 m[/tex]
Thus, 19.5 m/s and 87.8 m are the correct answers.
Learn more about "Friction" here:
brainly.com/question/13357196