Protons can be accelerated to speeds near the speed of light in particle accelerators. Calculate the wavelength of a proton moving at 2.90 x 108 m/s if the proton was a mass of 1.673 x 10-24 g. 2. Give the values for the quantum numbers associated with the following orbitals a) 2p b) 3s c) 5d

Respuesta :

Answer:

1. λ = 1.4x10⁻¹⁵ m

2. a) n=2, l=1, [tex]m_{l}[/tex]= -1, 0, +1, [tex]m_{s}[/tex] = +/- (1/2)

b) n=3, l=0, [tex]m_{l}[/tex]= 0, [tex]m_{s}[/tex] = +/- (1/2)

c) n=5, l=2, [tex]m_{l}[/tex]= -2, -1, 0, +1, +2, [tex]m_{s}[/tex] = +/- (1/2)  

Explanation:

1. The proton's wavelength can be found using the Broglie equation:

[tex] \lambda = \frac{h}{mv} [/tex]

Where:

h: is the Planck's constant = 6.62x10⁻³⁴ J.s

m: is the proton's mass = 1.673x10⁻²⁴ g = 1.673x10⁻²⁷ kg

v: is the speed of the proton = 2.90x10⁸ m/s

The wavelength is:

[tex] \lambda = \frac{h}{mv} = \frac{6.62 \cdot 10^{-34} J.s}{1.673 \cdot 10 ^{-27} kg*2.90 \cdot 10^{8} m/s} = 1.4 \cdot 10^{-15} m [/tex]                    

2. a) 2p

We have:

n: principal quantum number = 2

l: angular momentum quantum number = 1 (since is "p")

[tex]m_{l}[/tex]: magnetic quantum number = {-l,... 0 ... +l}

Since l = 1 → [tex]m_{l} = -1, 0, +1[/tex]

[tex]m_{s}[/tex]: is the spin quantum number = +/- (1/2)

b) 3s:

n = 3

l = 0 (since is "s")

[tex]m_{l}[/tex] = 0

[tex]m_{s}[/tex] = +/- (1/2)

c) 5d:

n = 5

l = 2 (since is "d")

[tex]m_{l}[/tex] = -2, -1, 0, +1, +2

[tex]m_{s}[/tex] = +/- (1/2)

I hope it helps you!

Answer:

(1) The wavelength of the proton is 1.366 x 10⁻¹⁵ m

(2) 2p( l = 1, ml = -1,0,+1)

    3s( n = 3, l = 0, ml = 0)

    5d ( l = 2, ml = -2,-1,0,+1,+2)

Explanation:

Given;

mass of the proton; m = 1.673 x 10⁻²⁴ g = 1.673 x 10⁻²⁷ kg

velocity of the proton, v = 2.9 x 10⁸ m/s

The wavelength of the proton is calculated by applying De Broglie's equation;

[tex]\lambda = \frac{h}{mv}[/tex]

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

Substitute the given values and solve for wavelength of the proton;

[tex]\lambda = \frac{h}{mv}\\\\ \lambda = \frac{(6.626*10^{-34})}{(1.673*10^{-27})(2.9*10^8)}\\\\\lambda = 1.366 *10^{-15} \ m[/tex]

(2) the values for the quantum numbers associated with the following orbitals is given by;

n, which represents Principal Quantum number

[tex]l,[/tex] which represents Azimuthal Quantum number

[tex]m_l,[/tex] which represents Magnetic Quantum number

(a) 2p (number of orbital = 3):

[tex]l= 1\\m_l = -1,0,+1[/tex]

(b) 3s (number of orbital = 1):

[tex]n= 3\\l=0\\m_l= 0[/tex]

(c) 5d (number of orbital = 5)

[tex]l=2\\m_l = 2, -1, 0, +1, +2[/tex]