Respuesta :

Answer:

The perimeter of the polygon is 22.

Step-by-step explanation:

Let [tex]A(x,y) =(-3,1)[/tex], [tex]B(x,y) = (5,1)[/tex], [tex]C(x,y) = (-3, 4)[/tex] and [tex]D(x,y) =(5,4)[/tex] the vertices of the polygon. From Geometry we know that number of side of polygons equals their number of vertices, then we notice that a quadrilateral is here. In addition, we conclude that such quadrilateral is a rectangle:

1) [tex]x_{A} = x_{C}[/tex]

2) [tex]x_{B} = x_{D}[/tex]

3) [tex]y_{A} = y_{B}[/tex]

4) [tex]y_{C} = y_{D}[/tex]

Hence, we find that [tex]AB = CD[/tex] and [tex]AC = BD[/tex].

Then we find all lengths of the rectangle by Pythagorean Theorem:

[tex]AB = \sqrt{[5-(-3)]^{2}+(1-1)^{2}}[/tex]

[tex]AB =8[/tex]

[tex]AC = \sqrt{[(-3)-(-3)]^{2}+(4-1)^{2}}[/tex]

[tex]AC = 3[/tex]

By Geometry, we conclude that [tex]CD = 8[/tex] and [tex]BD = 3[/tex].

Then, the perimeter of the rectangle ([tex]p[/tex]), dimensionless, is defined by the following formula:

[tex]p = 2\cdot (s+l)[/tex] (Eq. 1)

Where:

[tex]s[/tex] - Shortest length, dimensionless.

[tex]l[/tex] - Longest length, dimensionless.

If we know that [tex]s = 3[/tex] and [tex]l = 8[/tex], then the perimeter of the rectangle is:

[tex]p = 2\cdot (3+8)[/tex]

[tex]p = 22[/tex]

The perimeter of the polygon is 22.

Ver imagen xero099