Respuesta :

Answer:

P(X>26)=0.4721

Step-by-step explanation:

[tex]Mean = \mu = 25[/tex]

Standard deviation = [tex]\sigma = 14[/tex]

No. of observations = n = 49

We are supposed to find[tex]P(\bar{X} > 26)[/tex]

[tex]Z = \frac{x-\mu}{\sigma}\\Z=\frac{26-25}{14}\\Z=0.0714[/tex]

Refer the Z table for p value

P(X<26)=0.5279

P(X>26)=1-P(X<26)=1-0.5279=0.4721

Hence P(X>26)=0.4721