Answer:
51 cubic units
Step-by-step explanation:
[tex]3x+2y+z=12\\\Rightarrow z=12-3x-2y[/tex]
Now we integrate over volume integral over the range [tex]R = \{(x,y) | 0\le x \le {1}, -{2} \le y \le {4} \}[/tex]
[tex]V=\int_0^1\int_{-2}^4 12-3x-2y dydx\\ =\int_{-2}^4 12y-3yx-y^2|_4^{-2} dx\\ =\int_{0}^1 12\times4-3\times4x-16-[12\times-2-3\times-2x-4]dx\\ =\int_{0}^1 60-18xdx\\ =60x-9x^2|_{0}^1\\ =60-9\\ =51\ \text{cubic units}[/tex]
The volume of the solid is 51 cubic units.