Answer: the coefficient determination of dataset B is 1.00
Step-by-step explanation:
Given Dataset B
x y xy x² y²
3.1 8.9 27.59 9.61 79.21
9.4 15.0 141 88.36 225
1.2 4.8 5.76 1.44 23.04
1 6 6 1 36
9 14.9 134.1 81 222.01
5 11.9 59.5 25 141.61
3.4 9.8 33.32 11.69 96.04
7.4 15.0 111 54.76 225
0.1 4.7 0.47 0.01 22.09
7.5 13 97.5 56.25 169
∑x=47.1, ∑y=104, ∑xy=616.24, ∑x²=329.12, ∑y²=1239
Now to find the coefficient determination ( r² )
we need to first find r
r = { n(∑xy) - (∑x)(∑y) } / { √( [n∑x² - (∑x)²] [n∑y² - (∑y)²] )
so we substitute
r = { 10(616.24) - (47.1)(104)} / { √( [10(329.12) - (47.1)²] [10(1239) - (104)²] )
r = 1264 / 1299.45
r = 0.97
now the coefficient determination is ( r² )
so coefficient determination = r²
= (0.97)²
= 0.9409 ≈ 1.00 (integer)
Therefore the coefficient determination of dataset B is 1.00