Respuesta :

Answer:   52°

Step-by-step explanation:

[tex]\sin \theta=\dfrac{\text{side OPPOSITE of angle}}{\text{HYPOTENUSE}}\\\\\\\sin \theta =\dfrac{23}{29}\\\\\\.\quad \theta=\sin ^{-1}\bigg(\dfrac{23}{29}\bigg)\\\\\\.\quad \theta =52.47^o[/tex]

Rounded to the nearest degree: Ф = 52°

Step-by-step explanation:

Hey there!

Here;

The figure given is a Right angled triangle.

Let the unknown angle be a refrence angle.

Now,

p = 23

h = 29

In ratio of sin there is 'p' and 'h'. So, using sin ratio.

[tex] \sin( \alpha ) = \frac{p}{h} [/tex]

[tex] \sin( \alpha ) = \frac{23}{29} [/tex]

[tex] \alpha = { \sin}^{ - 1} (0.7931034)[/tex]

[tex] \alpha = 52.47°[/tex]

Therefore the the angle is 52°.

Hope it helps..

Otras preguntas