Respuesta :
Answer:
[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left(\frac{x}{2}\right)dx=\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec\left(\frac{x}{2}\right)+C[/tex]
Step-by-step explanation:
We want to find the integral:
[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left({\frac{x}{2}\right)dx[/tex]
First, perform the substitution y = x / 2. This yields:
[tex]\displaystyle dy = \frac{1}{2} \, dx \Rightarrow dx = 2\, dy[/tex]
Hence, the integral becomes;
[tex]\displaystyle =2\int \sec y\tan^5 y \, dy[/tex]
Next, as you had done, let's expand the tangent term but to the fourth:
[tex]\displaystyle =2\int \sec y\tan^4 y\tan y\, dy[/tex]
Recall that:
[tex]\tan^2(y)=\sec^2(y)-1[/tex]
Hence:
[tex]\displaystyle =2\int \sec y(\sec^2 y-1)^2\tan y\, dy[/tex]
We can use substitution once more. This time, let u = sec(y). Hence:
[tex]\displaystyle du = \sec y \tan y \, dy[/tex]
Rewrite:
[tex]\displaystyle =2\int \left((\sec^2y-1)^2\right)\left(\sec y \tan y\right)dy[/tex]
Therefore:
[tex]\displaystyle = 2\int (u^2 - 1)^2\, du[/tex]
Expand:
[tex]\displaystyle =2\int u^4-2u^2+1\, du[/tex]
Reverse Power Rule:
[tex]\displaystyle = 2\left(\frac{u^5}{5} - \frac{2u^3}{3} + u\right) + C[/tex]
Simplify:
[tex]\displaystyle = \frac{2u^5}{5} - \frac{4u^3}{3} + 2u + C[/tex]
Back-substitute:
[tex]\displaystyle = \frac{2\sec^5 y }{5}-\frac{4\sec^3 y}{3}+2\sec y+C[/tex]
Back-substitute:
[tex]\displaystyle =\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec \left(\frac{x}{2}\right)+C[/tex]
Therefore:
[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left(\frac{x}{2}\right)dx=\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec\left(\frac{x}{2}\right)+C[/tex]
Answer:
= 2 (sec (x/2) - 2sec³(x/2) + sec⁵(x/2) ) + C
3 5
Step-by-step explanation:
∫sec(x/2) tan⁵(x/2) dx
apply u substitute u = x/2
= ∫sec(u) tan⁵(u) * 2du
= 2 * ∫sec(u) tan⁴(u) tan(u) du
= 2 * ∫sec(u) (tan²(u))² tan(u) du
= 2 * ∫sec(u) (-1 + sec²(u))² tan(u) du
apply u substitute v = sec(u)
= 2 * ∫(-1 + v²)² dv
expand
= 2 * ∫1 - 2v² + v⁴ dv
sum
= 2 (v - 2v³ + v⁵ )
3 5
substitute it back
= 2 (sec (x/2) - 2sec³(x/2) + sec⁵(x/2) )
3 5
add constant to the solution.
= 2 (sec (x/2) - 2sec³(x/2) + sec⁵(x/2) ) + C
3 5