This is URGENT! Please help me solve this question with full solutions

Answer:
B
Step-by-step explanation:
Given
[tex]\frac{1}{(t-2)^2}[/tex] = 6 + [tex]\frac{1}{(t-2)}[/tex] ( multiply through by (t - 2)²
1 = 6(t - 2)² + t - 2 ← distribute parenthesis and simplify
1 = 6(t² - 4t + 4) + t - 2
1 = 6t² - 24t + 24 + t - 2
1 = 6t² - 23t + 22 ( subtract 1 from both sides )
6t² - 23t + 21 = 0 ← in standard form
(2t - 3)(3t - 7) = 0 → in factored form
Equate each factor to zero and solve for t
2t - 3 = 0 ⇒ 2t = 3 ⇒ t = [tex]\frac{3}{2}[/tex] ← p
3t - 7 = 0 ⇒ 3t = 7 ⇒ t = [tex]\frac{7}{3}[/tex] ← q
Thus
p × q = [tex]\frac{3}{2}[/tex] × [tex]\frac{7}{3}[/tex] = [tex]\frac{21}{6}[/tex] = [tex]\frac{7}{2}[/tex] → B