Respuesta :
Answer:
y = - [tex]\frac{63}{4}[/tex] or - 15.75
Step-by-step explanation:
Order of operations.
y + [tex]\frac{9}{2}[/tex] = y - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex] Subtract y from each side.
y - y + [tex]\frac{9}{2}[/tex] = y - y - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex]
[tex]\frac{9}{2}[/tex] = - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex] Add [tex]\frac{3}{4}[/tex] to each side
[tex]\frac{9}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{3}{4}[/tex] + [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex]
[tex]\frac{9}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex] Find the common denominator for [tex]\frac{9}{2}[/tex] and [tex]\frac{3}{4}[/tex], which is 4
[tex]\frac{9}{2}[/tex] * [tex]\frac{2}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex]
[tex]\frac{18}{4}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex]
[tex]\frac{21}{4}[/tex] = - [tex]\frac{y}{3}[/tex] Multiply each side by 3
[tex]\frac{21}{4}[/tex] * 3 = - [tex]\frac{y}{3}[/tex] * 3
[tex]\frac{63}{4}[/tex] = - y Divide each side by -1
y = - [tex]\frac{63}{4}[/tex] = - 15 [tex]\frac{3}{4}[/tex]
y = - 15.75
Step-by-step explanation:
There are 2 scenarios below. One without parenthesis and the second with. I believe the second one is your question.
- y+9÷2=y-3÷4-(y/3)
- y - y + y/3 = - 3/4 - 9/2 ⇒ combining like terms
- y/3 = -3/4 - 18/4
- y/3 = -21/4
- y = -21/4*3
- y = -63/4
- y = - 15 3/4
===============
- (y+9)÷2=(y-3)÷4-(y/3)
- 12*(y+9)/2 = 12* (y-3)/4 - 12*y/3 ⇒ this is to get rid of fraction
- 6(y+9) = 3(y-3) - 4y
- 6y + 54 = 3y - 9 - 4y
- 6y + 54 = - y - 9
- 6y + y = - 9 - 54
- 7y = - 63
- 7y/7 = -63/7
- y = -9