Respuesta :

Answer:  see proof below

Step-by-step explanation:

Use the following Sum to Product Identities:

[tex]\sin x+\sin y=2\sin \bigg(\dfrac{x+y}{2}\bigg)\cos \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\sin x-\sin y=2\cos \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x+\cos y=2\cos \bigg(\dfrac{x+y}{2}\bigg)\cos \bigg(\dfrac{x-y}{2}\bigg)\\\\\\\cos x+\cos y=-2\sin \bigg(\dfrac{x+y}{2}\bigg)\sin \bigg(\dfrac{x-y}{2}\bigg)[/tex]

Proof LHS → RHS

[tex]\text{LHS:}\qquad \qquad \qquad \dfrac{\sin 5-\sin 15+\sin 25 - \sin 35}{\cos 5-\cos 15- \cos 25 + \cos 35}[/tex]

[tex]\text{Reqroup:}\qquad \qquad \qquad \dfrac{(\sin 25+\sin 5)-(\sin 35 + \sin 15)}{(\cos 35+\cos 5)-(\cos 25 + \cos 15)}[/tex]

[tex]\text{Sum to Product:}\quad \dfrac{2\sin \bigg(\dfrac{25+5}{2}\bigg)\cos \bigg(\dfrac{25-5}{2}\bigg)-2\sin \bigg(\dfrac{35+15}{2}\bigg)\cos \bigg(\dfrac{35-15}{2}\bigg)}{2\cos \bigg(\dfrac{25+15}{2}\bigg)\cos \bigg(\dfrac{25-15}{2}\bigg)-2\cos \bigg(\dfrac{35+5}{2}\bigg)\cos \bigg(\dfrac{35-5}{2}\bigg)}[/tex][tex]\text{Simplify:}\qquad \qquad \dfrac{2\sin 15\cos 10-2\sin 25\cos 10}{2\cos 20\cos 15-2\cos 20\cos 5}[/tex]

[tex]\text{Factor:}\qquad \qquad \dfrac{2\cos 10(\sin 15-\sin 25)}{2\cos 20(\cos 15-\cos 5)}[/tex]

[tex]\text{Sum to Product:}\qquad \dfrac{\cos 10\bigg[2\cos \bigg(\dfrac{15+25}{2}\bigg)\sin \bigg(\dfrac{15-25}{2}\bigg)\bigg]}{\cos 20\bigg[-2\sin \bigg(\dfrac{15+5}{2}\bigg)\sin \bigg(\dfrac{15-5}{2}\bigg)\bigg]}[/tex]

[tex]\text{Simplify:}\qquad \qquad \dfrac{\cos 10[2\cos 20\sin (-5)]}{\cos 20[-2\sin 10\sin 5]}\\\\\\.\qquad \qquad \qquad =\dfrac{-2\cos10 \cos 20 \sin 5}{-2\sin 10 \cos 20 \sin 5}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 10}{\sin 10}\\\\\\.\qquad \qquad \qquad =\cot 10[/tex]

LHS = RHS:  cot 10 = cot 10   [tex]\checkmark[/tex]

Ver imagen tramserran
Ver imagen tramserran
Ver imagen tramserran