If the first-order maximum for monochromatic light falling on a double slit is at an angle of 10.0∘, at what angle is the second-order maximum?

Respuesta :

Answer:

The  value is  [tex]\theta_2 = 20.322^o[/tex]

Explanation:

From the question we are told that

  The angle of the first order maximum is  [tex]\theta _1 = 10.0^o[/tex]

Generally the condition for constructive interference is  

     [tex]dsin\theta = n \lambda[/tex]

Here  d is the separation between the slit ,

n  is the order of maxima  with values n  =  1, 2 , 3 ... for first , second , third ... order of maxima

    Now for first order of maximum

        [tex]dsin\theta_1 = \lambda \ \ ... \ \ ( 1)[/tex]

=>      [tex]dsin(10) = \lambda \ \ ... \ \ ( 1)[/tex]

    Now for second order of maximum

       [tex]dsin\theta = 2\lambda \ \ ... \ \ ( 2)[/tex]

dividing equation 1  by 2

      [tex]\frac{d sin (10)}{d sin (\theta_2 )} = \frac{\lambda}{2\lambda}[/tex]

     [tex]\frac{ sin (10)}{ sin (\theta_2 )} = \frac{1}{2}[/tex]

=>   [tex]2sin(10) = sin (\theta_2 )[/tex]

=>    [tex]0.3473 = sin(\theta_2)[/tex]

=>   [tex]\theta_2 = sin^{-1} [0.3473][/tex]

=>   [tex]\theta_2 = 20.322^o[/tex]