Respuesta :

Answer:

[tex]g(f(2))=3[/tex]

Step-by-step explanation:

So we have:

[tex]f(x)=4x-3\text{ and } g(x)=\frac{2x-1}{3}[/tex]

And we want to solve for g(f(2)).

First, find f(2):

[tex]f(2)=4(2)-3[/tex]

Multiply:

[tex]f(2)=8-3[/tex]

Subtract:

[tex]f(2)=5[/tex]

Now, substitute this in for g(f(2)):

[tex]g(f(2))=g(5)[/tex]

Substitute this in for g(x):

[tex]g(5)=\frac{2(5)-1}{3}[/tex]

Multiply:

[tex]g(5)=\frac{10-1}{3}[/tex]

Subtract:

[tex]g(5)=\frac{9}{3}[/tex]

Divide:

[tex]g(5)=3[/tex]

Therefore:

[tex]g(f(2))=3[/tex]