Respuesta :
Answer:
[tex]\boxed{a*b = 1.60 * 10^2}[/tex]
[tex]\boxed{a/b = 7.53 * 10^{-14}}[/tex]
[tex]\boxed{c/a = 1.59 * 10^{13}}[/tex]
Step-by-step explanation:
a = [tex]3.47 * 10^{-6}[/tex]
b = [tex]4.61 * 10^7[/tex]
c = [tex]5.52*10^7[/tex]
Finding a*b:
a*b =( [tex]3.47 * 10^{-6}[/tex] )*( [tex]4.61 * 10^7[/tex])
= (3.47*4.61) * ([tex]10^{-6}*10^7[/tex])
When bases are same, powers are to be added
= 15.997 * [tex]10^{-6+7}[/tex]
= 15.997 * [tex]10^1[/tex]
= 159.97
Rounding it off
=> 1.60 * 10²
Finding a/b:
=> [tex]\frac{3.47*10^{-6}}{4.61*10^7}[/tex]
Using rule of exponents [tex]a^m/a^n = a^{m-n}[/tex]
=> 0.753 * [tex]10^{-6-7}[/tex]
=> [tex]7.53*10^{-1}*10^{-13}[/tex]
=> [tex]7.53 * 10^{-1-13}[/tex]
=> 7.53 * 10⁻¹⁴
Finding c/a:
=> [tex]\frac{5.52 * 10^7}{3.47*10^{-6}}[/tex]
=> 1.59 * [tex]10^{7+6}[/tex]
=> 1.59 * 10¹³
Answer:
a × b = 1.60 × 10^2
a/b = 7.52 × 10^-14
c/a = 1.59 × 10^13
Step-by-step explanation:
a = 3.47 × 10^-6
b = 4.61 × 10^7
c = 5.52 × 10^7
Solve a × b
(3.47 × 10^-6) × (4.61 × 10^7)
When bases are same in multiplication, we add the exponents.
15.9967 × 10^1
Decimal point is after first non-zero digit. Round to hundredths.
1.60 × 10^2
Solve a/b
(3.47 × 10^-6)/(4.61 × 10^7)
When bases are same in division, subtract the exponents.
3.47/4.61 × 10^-14
0.75271149674 × 10^-14
Decimal point is after first non-zero digit. Round to hundredths.
7.52 × 10^-14
Solve c/a
(5.52 × 10^7)/(3.47 × 10^-6)
When bases are same in division, subtract the exponents.
5.52/3.47 × 10^13
1.59077809798 × 10^13
Round to hundredths.
1.59 × 10^13