A researcher compares the effectiveness of two different instructional methods for teaching anatomy. A sample of 146 students using Method 1 produces a testing average of 51.6. A sample of 180 students using Method 2 produces a testing average of 62.7. Assume the standard deviation is known to be 9.42 for Method 1 and 14.5 for Method 2. Determine the 98% confidence interval for the true difference between testing averages for students using Method 1 and students using Method 2. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval.

Respuesta :

Answer:

The  confidence interval is  [tex]-11.34 < \mu_1 -\mu_2 < -10.86[/tex]

Step-by-step explanation:

From the question we are told that

    The first sample size is  [tex]n_1 = 146[/tex]

    The second sample size is [tex]n_2 = 180[/tex]

    The first sample mean is [tex]\= x_1 = 51.6[/tex]

    The second  sample  mean is  [tex]\= x_2 = 62.7[/tex]

     The first standard deviation is  [tex]\sigma _1 = 9.42[/tex]

     The second standard deviation is  [tex]\sigma _2 = 14.5[/tex]

Given that the confidence level is  98% then the significance level is mathematically evaluated as

      [tex]\alpha = (100 -98 )\%[/tex]

       [tex]\alpha = 2 \%[/tex]

        [tex]\alpha = 0.02[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the z-table , the value is  [tex]Z_{\frac{\alpha }{2} } = 2.33[/tex]

The reason we are obtaining critical value of  

 [tex]\frac{\alpha }{2}[/tex]

instead of  

[tex]\alpha[/tex]

is because  

 [tex]\alpha[/tex]

represents the area under the normal curve where the confidence level interval (

[tex]1-\alpha[/tex]

) did not cover which include both the left and right tail while  

 [tex]\frac{\alpha }{2}[/tex]

is just the area of one tail which what we required to calculate the margin of error

NOTE: We can also obtain the value using critical value calculator (math dot armstrong dot edu)

Generally the margin of error is mathematically represented as

      [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2} }[/tex]

substituting values

      [tex]E = 2.33 * \sqrt{ \frac{9.42^2}{146^2} + \frac{14.5^2}{180^2} }[/tex]

substituting values

     [tex]E = 2.33 * \sqrt{ \frac{9.42^2}{146^2} + \frac{14.5^2}{180^2} }[/tex]

     [tex]E = 0.2405[/tex]

The 98% confidence interval is mathematically represented as

      [tex](\= x _ 1 - \= x_2 ) - E < \mu_1 -\mu_2 < (\= x _ 1 - \= x_2 ) + E[/tex]

substituting values

      [tex](51.6 - 62.7) - 0.2405 < \mu_1 -\mu_2 < (51.6 - 62.7) + 0.2405[/tex]

     [tex]-11.34 < \mu_1 -\mu_2 < -10.86[/tex]