Respuesta :

Answer:

[tex]g(x) = |\frac{1}{2}x - \frac{3}{2} | + 3[/tex]

Step-by-step explanation:

Given

[tex]y = |\frac{1}{2}x - 2| + 3[/tex]

Required

Translate the above one unit to the left

Replace y with f(x)

[tex]y = |\frac{1}{2}x - 2| + 3[/tex]

[tex]f(x) = |\frac{1}{2}x - 2| + 3[/tex]

When an absolute function is translated to the left, the resulting function is

[tex]g(x) = f(x - h)[/tex]

Because it is been translated 1 unit to the left, h = -1

[tex]g(x) = f(x - (-1))[/tex]

[tex]g(x) = f(x + 1)[/tex]

Calculating [tex]f(x+1)[/tex]

[tex]f(x+1) = |\frac{1}{2}(x+1) - 2| + 3[/tex]

Open bracket

[tex]f(x+1) = |\frac{1}{2}x + \frac{1}{2} - 2| + 3[/tex]

[tex]f(x+1) = |\frac{1}{2}x + \frac{1-4}{2} | + 3[/tex]

[tex]f(x+1) = |\frac{1}{2}x + \frac{-3}{2} | + 3[/tex]

[tex]f(x+1) = |\frac{1}{2}x - \frac{3}{2} | + 3[/tex]

Recall that

[tex]g(x) = f(x + 1)[/tex]

Hence;

[tex]g(x) = |\frac{1}{2}x - \frac{3}{2} | + 3[/tex]