Notice that C has a clockwise orientation. By Green's theorem, we have
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\iint_D\left(\frac{\partial(xy+x\cos x)}{\partial x}-\frac{\partial(y\cos x-xy)}{\partial y}\right)\,\mathrm dx\,\mathrm dy[/tex]
where D is the triangule region with C as its boundary, given by the set
[tex]D=\{(x,y)\mid0\le x\le2\land0\le y\le8-4x\}[/tex]
So we have
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\int_0^2\int_0^{8-4x}((y+\cos x-x\sin x)-(\cos x-x\sin x))\,\mathrm dy\,\mathrm dx[/tex]
[tex]\displaystyle\int_C\mathbf F(x,y)\cdot\mathrm d\mathbf r=-\int_0^2\int_0^{8-4x}y\,\mathrm dy\,\mathrm dx=\boxed{-\dfrac{64}3}[/tex]