Find the area of the shaded regions (the green). I'll give brainliest for the correct answer!

Answer:
[tex]Area \ of \ Sector = 56.5 \ cm^2[/tex]
Step-by-step explanation:
[tex]Area \ of \ Sector = \frac{1}{2} \ r^2 \theta[/tex]
Where r = 9 cm, θ = 80 degrees
=> Firstly 80 degrees in radians
80° = 1.4 radians
=> Now, The solution:
[tex]Area \ of \ Sector = \frac{1}{2} \ r^2 \theta[/tex]
[tex]Area \ of \ Sector = \frac{1}{2} (9)^2(1.4)\\Area \ of \ Sector = \frac{1}{2} (81)(1.4)\\Area \ of \ Sector = \frac{113.1 }{2}\\[/tex]
[tex]Area \ of \ Sector = 56.5 \ cm^2[/tex]
Answer:
[tex]\boxed{18\pi \: \mathrm{cm^2}}[/tex]
Step-by-step explanation:
Apply formula for area of a sector.
[tex]\pi r^2 \times \frac{\theta }{360}[/tex]
[tex]\theta =80\° \\r=9[/tex]
Plug in the values.
[tex]\pi \times 9^2 \times \frac{80}{360}[/tex]
[tex]\pi \times 81 \times \frac{80}{360}[/tex]
[tex]\pi \times 81 \times \frac{2}{9}[/tex]
[tex]\pi \times 18[/tex]
[tex]18\pi[/tex]
The area of the sector is [tex]18\pi \: \mathrm{cm^2}[/tex].