Respuesta :

Answer:

[tex]Area \ of \ Sector = 56.5 \ cm^2[/tex]

Step-by-step explanation:

[tex]Area \ of \ Sector = \frac{1}{2} \ r^2 \theta[/tex]

Where r = 9 cm, θ = 80 degrees

=> Firstly 80 degrees in radians

80° = 1.4 radians

=> Now, The solution:

[tex]Area \ of \ Sector = \frac{1}{2} \ r^2 \theta[/tex]

[tex]Area \ of \ Sector = \frac{1}{2} (9)^2(1.4)\\Area \ of \ Sector = \frac{1}{2} (81)(1.4)\\Area \ of \ Sector = \frac{113.1 }{2}\\[/tex]

[tex]Area \ of \ Sector = 56.5 \ cm^2[/tex]

Answer:

[tex]\boxed{18\pi \: \mathrm{cm^2}}[/tex]

Step-by-step explanation:

Apply formula for area of a sector.

[tex]\pi r^2 \times \frac{\theta }{360}[/tex]

[tex]\theta =80\° \\r=9[/tex]

Plug in the values.

[tex]\pi \times 9^2 \times \frac{80}{360}[/tex]

[tex]\pi \times 81 \times \frac{80}{360}[/tex]

[tex]\pi \times 81 \times \frac{2}{9}[/tex]

[tex]\pi \times 18[/tex]

[tex]18\pi[/tex]

The area of the sector is [tex]18\pi \: \mathrm{cm^2}[/tex].