Respuesta :

Answer:

A

Step-by-step explanation:

[tex]-2(5y-5)-3y\leq -7y+22[/tex]

Expand parentheses:

[tex]-10y+10-3y\leq -7y+22[/tex]

Move all y's to one side and numbers to the other:

[tex]-6y\leq 12[/tex]

Divide both sides by -6. Since you are dividing both sides by a negative number, you need to flip the comparator:

[tex]y\geq -2[/tex]

Hope this helps!

Answer:

[tex]y\ge \:-2[/tex]

Step-by-step explanation:

[tex]-2(5y-5)-3y \leq -7y+22[/tex]

Expand the brackets

[tex]-10y+10-3y \leq -7y+22[/tex]

[tex]-10y-3y+10 \leq -7y+22[/tex]

[tex]-13y+10 \leq -7y+22[/tex]

Add 7y and -10 on both sides.

[tex]-13y+7y \leq 22-10[/tex]

[tex]-6y \leq 12[/tex]

Divide -6 on both sides.

[tex]\frac{-6y}{-6}\ge \frac{12}{-6}[/tex]

[tex]y\ge \:-2[/tex]