Two large containers A and B of the same size are lled with different uids. The uids in containers A and B are maintained at 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After 1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the other container. After 1 minute in container B the temperature of the bar rises 10°. How long, measured from the start of the entire process, will it take the bar to reach 99.9° C?

Respuesta :

Answer: t = 9.05 min

Step-by-step explanation: The rate of temperature over time is given by:

[tex]\frac{dT}{dt} = k (T - T_c)[/tex]

where:

K is the constant of transference of heat

[tex]T_c[/tex] is temperature of the container

[tex]\int\limits^a_b {\frac{1}{T-T_c} } \, dT = \int\limits^a_b {k} \, dt[/tex]

ln (T - [tex]T_c[/tex]) = kt + c

[tex]e^{kt+c} = T - T_c[/tex]

[tex]Ce^{kt} = T - T_c[/tex]

[tex]T = Ce^{kt} + T_c[/tex]

In container A, the temperature is at 0°C, so

[tex]T = Ce^{kt} + 0[/tex]

For the bar, when t = 0 min, T = 100°C:

[tex]T = Ce^{kt}[/tex]

100 = [tex]Ce^{k.0}[/tex]

C = 100

After 1 minute, the temperature of the bar is 90°C, so:

[tex]T = 100e^{kt}[/tex]

[tex]100e^{k.1} = 90[/tex]

[tex]e^{k} = \frac{90}{100}[/tex]

[tex]ln (e^k) = ln (0.9)[/tex]

k = ln(0.9)

k = - 0.105

[tex]T = 100e^{-0.105t}[/tex]

After 2 minutes, the temperature will be:

[tex]T = 100e^{-0.105.2}[/tex]

T = 81.06°C

For container B, the temperature is 100°C, so:

[tex]T = Ce^{kt} + T_c[/tex]

[tex]T = Ce^{kt} + 100[/tex]

The initial temperature of the bar when entering the container B is T = 81.06°C, then:

[tex]81.06 = Ce^{k.0} + 100[/tex]

C = - 18.94

After 1 minute, the temperature rises 10°C:

[tex]T = - 18.94e^{kt} + 100[/tex]

91 = [tex]- 18.94e^{k.1} + 100[/tex]

[tex]e^{k} = \frac{9}{18.94}[/tex]

[tex]e^{k} = 0.475[/tex]

k = ln(0.475)

k = - 0.744

[tex]T = - 18.94e^{-0.744t} + 100[/tex]

When T = 99.9°C:

[tex]99.9 = - 18.94e^{-0.744t} + 100[/tex]

[tex]e^{- 0.744t} = \frac{99.9 - 100}{- 18.94}[/tex]

[tex]e^{-0.744t} = 0.0053[/tex]

t = [tex]\frac{ln(0.0053)}{-0.744}[/tex]

t = 7.05 min

The entire process will take:

t = 2 + 7.05

t = 9.05 min