When a cycle is sold allowing 10% discount on its marked
price a seller gains 5% and allowing 5% discount the profit is
Rs 351. Find the cost price of the cycle. (Ans: Rs. 3240)​

Respuesta :

The cost price of the cycle is Rs.3240

Represent the cost price of the cycle with x and the selling price with y

A gain of 5% when the marked price is at a discount of 10% implies that:

[tex]5\%=\frac{(1 - 10\%)y-x}{x}[/tex]

Express 10% as decimal

[tex]5\%=\frac{(1 - 0.10)y-x}{x}[/tex]

[tex]5\%=\frac{0.90y-x}{x}[/tex]

Express 5% as decimal

[tex]0.05=\frac{0.90y-x}{x}[/tex]

Cross multiply

[tex]0.05x=0.90y-x[/tex]

Collect like terms

[tex]x + 0.05x=0.90y\\[/tex]

This gives

[tex]1.05x=0.90y[/tex]

Make y the subject of the formula

[tex]y = \frac{1.05x}{0.90}[/tex]

Also, when the discount is 5% and the profit is 351, we have:

[tex]351=(1 - 5\%)y -x[/tex]

Express 5% as decimal

[tex]351=(1 - 0.05)y -x[/tex]

This gives

[tex]351=0.95y -x[/tex]

Make y the subject

[tex]0.95y = 351 + x[/tex]

Substitute [tex]y = \frac{1.05x}{0.90}[/tex]

[tex]0.95 \times \frac{1.05x}{0.90} = 351 + x[/tex]

[tex]\frac{0.9975x}{0.90} = 351 + x[/tex]

Subtract x from both sides

[tex]\frac{0.9975x}{0.90} -x= 351[/tex]

Take LCM

[tex]\frac{0.9975x - 0.9x}{0.90}= 351[/tex]

[tex]\frac{0.0975x}{0.90}= 351[/tex]

Multiply both sides by 0.90

[tex]0.0975x= 315.9[/tex]

Divide both sides by 0.0975

[tex]x= 3240[/tex]

Hence, the cost price of the cycle is Rs.3240

Read more about discounts and price at:

https://brainly.com/question/13651341