Respuesta :

Answer:

[tex]Z_{1} Z_{2} = 3 i[/tex]

Step-by-step explanation:

Step(i):-

Given z 1 = 3(cos 37° + i sin 37°)

          z 2 = (cos 53° + i sin 53°)

by using complex numbers

      [tex]Z_{1} = r_{1} ( cos\alpha_{1} + isin\alpha_{1} ) = r_{1} cis\alpha _{1}[/tex]

      [tex]Z_{2} = r_{2} ( cos\alpha_{2} + isin\alpha_{2} ) = r_{2} cis\alpha _{2}[/tex]

step(ii):-

now

   [tex]Z_{1} Z_{2} = r_{1} r_{2} cis (\alpha _{1} + \alpha _{2})[/tex]

       z ₁ = 3(cos 37° + i sin 37°) = 3 c i s 37°

       z ₂ = (cos 53° + i sin 53°) = c i s 53°

we will use formula

     [tex]Z_{1} Z_{2} = r_{1} r_{2} cis (\alpha _{1} + \alpha _{2})[/tex]

     [tex]Z_{1} Z_{2} = 3 X 1 cis (37 + 53) = 3cis (90) = 3 cis(\frac{\pi }{2} )[/tex]

    [tex]Z_{1} Z_{2} = 3(cos(\frac{\pi }{2} ) + isin(\frac{\pi }{2}))[/tex]

    [tex]Z_{1} Z_{2} = 3(0 + i (1)) = 3 i[/tex]

Conclusion:-

       [tex]Z_{1} Z_{2} = 3 i[/tex]

       

 

     

22nlin

Answer:

2i

Step-by-step explanation:

z 2 = 2/3(cos53° + isin53°

I got it right on odyssey ware