Answer:
B.The matrix is invertible because the determinant is defined.
Step-by-step explanation:
Definition: A matrix is invertible if the determinant is not equal to zero.
Given the matrix:
[tex]A=\left(\begin{array}{ccc}20&5&3\\4&-15&6\\0&25&-9\end{array}\right)[/tex]
The determinant of the matrix:
[tex]|A|=20\left|\begin{array}{ccc}-15&6\\25&-9\end{array}\right|-5\left|\begin{array}{ccc}4&6\\0&-9\end{array}\right|+3\left|\begin{array}{ccc}4&-15\\0&25\end{array}\right|[/tex]
[tex]|A|=20(-15*-9-25*6)-5(-9*4-6*0)+3(4*25-0*-15)\\=20(135-150)-5(-36-0)+3(100+0)\\=20(-15)-5(-36)+3(100)\\=-300+180+300\\|A|=180[/tex]
Since the determinant, [tex]|A|\neq 0[/tex], the matrix is invertible because the determinant is defined.