contestada

Given the midpoint and one of the endpoints of a line segment, find the other endpoint. Midpoint: (0,3) Endpoint: (6,-3)

Respuesta :

Answer:

[tex](-6,9)[/tex]

Step-by-step explanation:

Midpoint: (0,3)

Endpoint: (6,-3)

Use the midpoint formula:

[tex]M=(\frac{x_{1}+x_{2}}{2} ,\frac{y_{1}+y_{2}}{2})[/tex]

Since you already have the midpoint and you need an endpoint, let the unknown endpoint be (x,y). Take the midpoint formula apart:

[tex]\frac{x_{1}+x{2}}{2}=m_{x}[/tex]

[tex]\frac{y_{1}+y_{2}}{2} =m_{y}[/tex]

[tex]m_{x}[/tex] and [tex]m_{y}[/tex] are the coordinates of the midpoint. Enter the known values of the midpoint into the equations:

[tex](0_{m_{x}},3_{m_{y}})\\\\\frac{x_{1}+x_{2}}{2}=0 \\\\\frac{y_{1}+y{2}}{2}=3[/tex]

Now enter the known endpoint values:

[tex](6_{x_{1}},-3_{y_{1}})\\\\\frac{6+x_{2}}{2}=0\\\\\frac{-3+y_{2}}{2}=3[/tex]

Solve for x. Multiply both sides by 2:

[tex]2*(\frac{6+x}{2})=2*(0)\\\\6+x=0[/tex]

Subtract 6 from both sides:

[tex]6-6+x=0-6\\x=-6[/tex]

Now solve for y. Multiply both sides by 2:

[tex]2*(\frac{-3+y}{2})=2*(3)\\\\ -3+y=6[/tex]

Add 3 to both sides:

[tex]-3+3+y=6+3\\y=9[/tex]

Now take the values of x and y and turn into a point:

[tex]x=-6\\y=9\\(-6,9)[/tex]

Finito.