Congruent triangles have equal corresponding sides lengths and angle measures.
- [tex]\mathbf{\angle J = 67^o}[/tex]
- [tex]\mathbf{\angle T = 67^o}[/tex]
- [tex]\mathbf{\angle G = 46^o}[/tex]
- [tex]\mathbf{ST = 5cm}[/tex]
- [tex]\mathbf{HJ = 3.7cm}[/tex]
Angles H and J are the base angles of ΔGHJ.
So:
[tex]\mathbf{\angle J = 67^o}[/tex]
Angle T in ΔSTU corresponds to angle H.
So:
[tex]\mathbf{\angle T = 67^o}[/tex]
The sum of angles in a triangle is 180 degrees.
So, we have:
[tex]\mathbf{G + H + J = 180^o}[/tex]
Substitute values for H and J
[tex]\mathbf{\angle G + 67 + 67 = 180^o}[/tex]
[tex]\mathbf{\angle G + 134 = 180^o}[/tex]
Subtract 134 from both sides
[tex]\mathbf{\angle G = 46^o}[/tex]
Side length ST corresponds to GH.
So, we have:
[tex]\mathbf{ST = 5cm}[/tex]
Side length HJ corresponds to TU.
So, we have:
[tex]\mathbf{HJ = 3.7cm}[/tex]
Read more about congruent triangles at:
https://brainly.com/question/12413243