Answer:
a. 1
b. 3
c. [tex]\sqrt{2}[/tex]
Step-by-step explanation:
To find a distance between two points or the length of the segment, we use the following formula:
[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
a. A = (3,5) and B =(3,6)
AB = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex] = [tex]\sqrt{(3-3)^2+(6-5)^2} = \sqrt{1} =1[/tex]
b. C = (-2,-3) and D =(-2,-6)
CD = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2} = \sqrt{(-2 -(-2))^2+(-6 -(-3))^2} = \sqrt{9} = 3[/tex]
c. E = (-3,1) and F =(-3,-1)
EF = [tex]\sqrt{(x2-x1)^2+(y2-y1)^2} = \sqrt{(-3 -(-3))^2+(-1-1)^2} = \sqrt{2}[/tex]
Hope it will find you well.