Answer:
f - f '= 6.18*10^11 Hz
Explanation:
The change in frequency is given by:
[tex]\frac{1}{f'}=\frac{1}{f}\frac{\sqrt{1+v/c}}{\sqrt{1-v/c}}[/tex]
f': observed frequency
f: source frequency = 6.17*10^14 Hz
v: speed of the source = 3.01*10^55 m/s
c: speed of light = 3*10^8 m/s
By replacing all these values you obtain:
[tex]\frac{1}{f'}=\frac{1}{6.17x10^{14} Hz}\frac{\sqrt{1+(3.01*10^5m/s)(3*10^8m/s)}}{\sqrt{1-(3.01*10^5m/s)(3*10^8m/s)}}=1.62*10^{-15}\\\\f'=6.16*10^{14}Hz[/tex]
hence, the change in frequency f-f' will be:
f - f '= 6.18*10^11 Hz