Answer
(a)
[tex]A^{-1} = \frac{1}{3493} \begin{pmatrix} 210 && -59 && -12 \\ 84 && 176 && 95 \\ 77 && -5 && 295 \end{pmatrix}[/tex]
(b)
[tex]A^{-1} b = \begin{pmatrix} \frac{500}{7} \\\\ \frac{2400}{7} \\\\ \frac{2700}{7} \end{pmatrix}[/tex]
Step-by-step explanation:
Remember that when you want to solve a problem like this, you express the equation as following
[tex]Ax = b[/tex]
So, if you know the inverse of [tex]A[/tex] then
[tex]x = A^{-1} b[/tex]
For this case
[tex]A = \begin{pmatrix} 15 && 5 && -1 \\ -5 && 18 && -6 \\ -4 && -1 && 12 \end{pmatrix}[/tex]
Now for this case the inverse of A would be
[tex]A^{-1} = \frac{1}{3493} \begin{pmatrix} 210 && -59 && -12 \\ 84 && 176 && 95 \\ 77 && -5 && 295 \end{pmatrix}[/tex]
Then when you multiply with the vector solution
[tex]A^{-1} b = \frac{1}{3493} \begin{pmatrix} 210 && -59 && -12 \\ 84 && 176 && 95 \\ 77 && -5 && 295 \end{pmatrix} * \begin{pmatrix} 2400 \\ 3500 \\ 4000 \end{pmatrix} = \frac{1}{3493} \begin{pmatrix} 249500 \\ 1197600 \\ 1347300 \end{pmatrix}\\\\\\= \begin{pmatrix} \frac{500}{7} \\\\ \frac{2400}{7} \\\\ \frac{2700}{7} \end{pmatrix}[/tex]
So from that information you can conclude that the solution to the system of equations is x = 500/7 y = 2400/7 and z = 2700/7