A large storage tank, open to the atmosphere at the top and filled with water, develops a small hole in its side at a point 10.4 m below the water level. Assume the tank is large so the velocity of the water at the top of the tank is zero. The rate of flow from the leak is 2.53×10^−3 m3/min. Determine the diameter of the hole.

Respuesta :

Answer:

Therefore the diameter of the hole is [tex]1.94 \times 10^{-3}[/tex] m.

Step-by-step explanation:

Bernoulli's equation,

[tex]P_1+\frac12 \rho v^2_1+\rho g h_1= P_2+\frac12 \rho v^2_2+\rho g h_2[/tex]

P₁ = P₂= atmospheric presser

[tex]\rho[/tex]= density

[tex]\frac12 \rho v^2_1+\rho g h_1= \frac12 \rho v^2_2+\rho g h_2[/tex]             [since P₁ = P₂]

[tex]\Rightarrow\rho (\frac12 v^2_1+ g h_1)= \rho(\frac12 v^2_2+ g h_2)[/tex]

[tex]\Rightarrow\frac12 v^2_1+ g h_1= \frac12 v^2_2+ g h_2[/tex]

[tex]\Rightarrow\frac12 v^2_2-\frac12 v^2_1=g h_1- g h_2[/tex]

[tex]\Rightarrow v^2_2- v^2_1=2g h[/tex]                                [[tex]h_1-h_2=h[/tex]]

Here   [tex]v_1\approx 0[/tex]

[tex]\Rightarrow v^2_2=2g h[/tex]

[tex]\therefore v_2=\sqrt {2gh[/tex]

Here g= 9.8 m/s² , h = 10.4 m

The velocity of water that leaves from the hole [tex]v_2[/tex] = [tex]\sqrt {2\times 9.8\times 10.4}[/tex] m/s

                                                                                  =14.28 m/s.

Given, the rate of flow from the leak is [tex]2.53\times 10^{-3}[/tex] [tex]m^3/min[/tex]

                                                               [tex]=\frac{2.53\times 10^{-3}}{60}[/tex]  [tex]m^3/s[/tex]

Let the diameter of the hole be d.

Then the cross section area of the hole is [tex]=\pi (\frac d2)^2[/tex]

We know that,

The rate of flow = Cross section area × speed

[tex]\Rightarrow \frac{2.53\times 10^{-3}}{60} =\pi (\frac d2)^2\times 14.28[/tex]

[tex]\Rightarrow (\frac d2)^2=\frac{2.53\times 10^{-3}}{60\times 14.28\times \pi}[/tex]

[tex]\Rightarrow d= 1.94 \times 10^{-3}[/tex]

Therefore the diameter of the hole is [tex]1.94 \times 10^{-3}[/tex] m.