The function ​f(x,y,z)equals2 x plus z squared has an absolute maximum value and absolute minimum value subject to the constraint x squared plus 2 y squared plus 3 z squaredequals16. Use Lagrange multipliers to find these values.

Respuesta :

Answer:

Absolute maxima an minma both occured at [tex]\frac{25}{3}[/tex].

Step-by-step explanation:

Given function is,

[tex]f(x,y,z)=2x+z^2\hfill (1)[/tex]

subject to,

[tex]x^2+2y^2+3z^2=16\hfill (2)[/tex]

Let [tex]g(x,y,z)=x^2+2y^2=3z^2-16[/tex]

To find absolute maxima and absolute minima using Lagranges multipliers method consider [tex]\lambda[/tex] as the multipliers such that,

[tex]\nabla f=\lambda \nabla g[/tex]

[tex]\leftrightarrow (2, 0 ,2z )=\lambda (2x, 4y, 6z)[/tex]

on compairing both side we get,

[tex]2z=6\lambda z\implies \lambda=\frac{1}{3}[/tex]

[tex]4\labda y=0\implies y=0[/tex]

[tex]2=2\lambda x\implies x=\frac{1}{\lambda}=3[/tex]

From (2),

[tex]x^2+2y^2+3z^2=16[/tex]

[tex]\implies 9+0+3z^2=16[/tex]

[tex]\implies z=\pm\sqrt{\frac{7}{3}}[/tex]

Absolute maxima, at x=3, y=0,[tex] z= \sqrt{\frac{7}{3}}[/tex] is,

[tex]|f(x,y,z)|_{max}=(2x+z^2)_(3,0,\sqrt{\frac{7}{3}})=(2\times3)+\frac{7}{3}=\frac{25}{3}[/tex]

Absolute minima, at x=3, y=0, [tex]z= -\sqrt{\frac{7}{3}}[/tex] is,

[tex]|f(x,y,z)|_{max}=(2x+z^2)_(3,0,-\sqrt{\frac{7}{3}})=(2\times3)+\frac{7}{3}=\frac{25}{3}[/tex]

Hence the result.